Welcome to ProjectReserve.com

Download Free Research Project Topics and Materials in various Fields at all levels of Study (i.e Undergraduate, Postgraduate, Ph.D etc) @ ProjectReserve.com :: Tel: +2348074521866, +2348066484965, Email: admin@projectreserve.com
  • Check Topics by Department

    • Click here to start Downloading Free Project Topics and Materials in Various Departments at all Levels of Study
  • Testimonies

    • Like to check on our goodwill? Click here to see what our clients have to say about our services Read More
  • Hire a Writer

    • We deliver you a complete Fresh Research write-up, Term Paper, Research Proposal, Assignment, Essay, etc in no-time. See details here!
  • Contact Us

    • Need to reach us directly on Phone, Mail or WhatsApp? Our Support Service is online 24/7, Click here to get in touch now!

USE OF BIOFERTILIZER PRODUCED FROM FERMENTED ORGANIC WASTES IN THE PRODUCTION OF OKRA

For more Crop Science projects click here

ABSTRACT

The experiments were conducted at the Department of Crop Science Analytical Laboratory and green house of Faculty of Agriculture, University of Nigeria, Nsukka. Experiment one was an analysis of the nutrient contents of fermented and unfermented plant waste materials using the official method of analysis of Association of Official Analytical Chemists (AOAC). Experiment two was on assessment of the effects of plant wastes and different forms of organic manure fermented for one or two months on the growth and yield of okra plants. The experiment was a split-split plot experiment laid out in a completely randomized design (CRD) with four replications. The factors were plant waste (four), particle size (two), and form (four), giving a total of thirty-two treatment combinations. The plant wastes were rice husks, moringa pod husks, grass, and control (no manure).The two particle sizes were 1.00 mm and 0.63 mm and the four types of manure were biol, biosol, biol and biosol combination and no manure. Data were collected on; number of leaves per plant, number of leaves/treatment, plant height/treatment, plant height, stem girth, stem girth/ treatment, seed weight per fruit, fruit weight, fruit girth, 100 seed weight, number of seeds per plant, average number of seeds/treatment. Data were subjected to analysis of variance (ANOVA). Mean separation was done using Fishers least significant difference. Significance was accepted at (P < 0.05).


Moringa pod had the highest nitrogen (1.30%), phosphorus (16.38 ppm), potassium (0.54 ppm) and fat content (2.65%). The biols (P < 0.05) gave the highest percentage moisture of 87.4% for rice husk, 83.28% for moringa pod husk and 85% for grass. The least percentage ash was 0.84%, 0.87% and 0.94% respectively. Fat content was considerably higher in the raw wastes than in the fermented wastes at both one month and two months of fermentation. Moisture content was generally low at 6.4%, 7.0%, and 6.85% for moringa pod, grass and rice husk, respectively. The liquid (biol) of the wastes fermented for one month differed significantly ( P < 0.05) from both the biosol and the biol + biosol combination in improving plant height, number of leaves and stem girth of okra plant starting from three weeks after planting. Thus, biol gave the best result for fruit length (5.44 cm), fruit weight(0.78 g), fruit girth(4.52 cm), number of seeds (10.33), 100 seed weight (4.32 g) and seed weight per fruit (0.46 g)( at P < 0.05) compared to biosol that gave fruit length (3.88cm), fruit weight(0.38 g), fruit girth(2.92 cm), number of seeds(5.50), 100 seed weight(2.98g) and seed weight per fruit(0.19g). For wastes fermented for two months, the biol also gave the best result for fruit length (5.87 cm), fruit weight (0.63 g), fruit girth (4.10 cm), number of seeds (12.29), 100 seed weight (2.63 g) and seed weight per fruit (0.36 g),( P < 0.05), compared to the biosol that gave fruit length (1.33 cm), fruit weight(0.07 g), fruit girth(0.83 cm), number of seeds(1.33), 100 seed weight(0.67 g) and seed weight per fruit(0.03 g)( P < 0.05). Among the three plant wastes, the solid wastes (biosols) of rice husk improved okra fruit length (4.40 cm) more than grass (2.21 cm) and moringa pod husk (2.71 cm). Particle sizes have no significant effect (p< 0.05) on the growth and yield of okra. The liquid wastes (biols) of moringa pod husk gave the best growth and yield. Generally, plant growth and yield were better for wastes fermented for one month compared to wastes fermented for two months (P < 0.05).

TABLE OF CONTENT

Title Page
Table of Content
List of Tables
List of Figures
Abstract

Introduction

Literature Review
Origin and cultivation of okra
Cultivation of Okra
Nutritional Qualities of Okra
Production of Manure from Organic Waste Materials
Biosol (Digestate) Production from Fermented Organic Waste Materials
Biol Production from Fermented Organic Waste Materials
Importance of Organic Agriculture

Materials and Methods
The Treatment Combination
Experiment One: Evaluation of the Nutrient Content of the Plant Wastes
Proximate Analysis
Chemical Analysis
Waste fermentation
Manure Mixture
Biol
Biosol
Biol and Biosol (B&B)
Experiment Two

Data Collection
Statistical Analysis
Results
Experiment I
Experiment II
Height
Stem Girth
Number of Leaves
Seed Yield
Pod Yield
Combined Yield Effects

Discussion
Conclusion

References

INTRODUCTION

The environment, human health and agricultural practices are intrinsically linked: environmental quality is crucially important to agriculture because agricultural waste has the potential to harm human and pollute the environment. This means that farmers have a duty to ensure that they do not treat, keep or dispose of agricultural waste in a manner likely to cause pollution of the environment or harm to human (SEPA, 2005). In spite of the intensive use of inputs for about half a century in Nigerian agriculture, the yield gap in various crops still remains large even after following the best practices. The agricultural lands continue to shrink and there is a greater threat to global environment and soil resources. These threats are erosion of biodiversity and change of climate marching towards desertification and environmental, soil, air, and water pollution. Hence there is now a greater need to maintain the crop/soil environment by popularizing eco-friendly and cost effective organic manures (Chandrakala, 2008).

Global awareness of health and environmental issues is increasing in recent years and there is a growing demand for organically grown food products worldwide. Before the green revolution, cultivation was mostly by natural and traditional farming methods which involved natural methods of maintaining crop productivity and controlling crop pests. Consequent upon the green revolution, the use of high yielding and fertilizer responsive varieties and cultivation system were intensified and this had prompted the use of chemical fertilizers and pesticides. This indiscriminate use of fertilizers and pesticides led to several harmful effects on soil, water and the environment causing their pollution and decline in the productivity of the soil on which crops depend (Chandrakala, 2008).

A number of alternatives have been muted as means of curtailing this harmful trend, chief amongst them is a return to the traditional farming methods that use locally available raw materials as manure and the more refined organic farming system.

In fact, organic agriculture is a holistic means of farming with the aim of conserving natural resources through good agronomic practices and the use of locally available low cost inputs in order to maintain soil fertility and conserve its rich bio-diversity to provide safe clean environment and achieve economic sustainability.
Due to the prohibitive cost of chemical fertilizer, majority of Nigerian small-scale


farmers do not apply the recommended fertilizer doses. They use indigenous organic materials as source of nutrients. These organics are bulky in nature but, contain reasonable amounts of nutrients.

Organic manure is therefore the backbone of organic agriculture. Apart from its bulkiness it has been well documented that it is a slow release fertilizer with long residual effect (Chandrakala, 2008), this implies that it has a disadvantage on short term annual crops that may require quick release of plant nutrients to enable them complete their life cycle. This has necessitated research in the area of reducing its bulkiness and exploring means of hastening the release of the enormous nutrient trapped in this raw material. Apart from boosting crop yield, organic manure increases the organic matter content of soils thereby buffering the soil against changes in climate.
Important source of this organic manure include the biofuel technology, waste management plants, municipal solid wastes (MSW), landfills and composts (Sanjeet et al., 2010).

The biofuel technology aims at maximizing the energy potentials of agricultural wastes by using them in the production of biofuel and biodiesels and in return produces a digestate (organic manure) that is very rich, well cured and environmentally friendly which could be used in crop production. Hence, this work was aimed at maximising the use of plant wastes as organic manures in various forms as obtained from biogas production process with the following objectives to

1.      evaluate the nutrient contents of three plant organic waste materials before and after fermentation and.

2.      assess the efficacy of the three forms of organic manure (biol - the liquid part of the fermented waste, biosol - the solid part of the fermented waste and bio+biosol combination) and three plant wastes (rice husk, grass and moringa pod husk) on the growth and yield of okra......


For more Crop Science projects click here
___________________________________________________________________________
This is an Undergraduate Thesis and the complete research material plus questionnaire and references can be obtained at an affordable price of N3,000 within Nigeria or its equivalent in other currencies.


INSTRUCTION ON HOW TO GET THE COMPLETE PROJECT MATERIAL

Kindly pay/transfer a total sum of N3,000 into any of our Bank Accounts listed below:
·         Diamond Bank Account:
A/C Name:      Haastrup Francis
A/C No.:         0096144450

·         GTBank Account:
A/C Name:      Haastrup Francis
A/C No.:         0029938679

After payment, send your desired Project Topic, Depositor’s Name, and your Active E-Mail Address to which the material would be sent for downloading (you can request for a downloading link if you don’t have an active email address) to +2348074521866 or +2348066484965. You can as well give us a direct phone call if you wish to. Projects materials are sent in Microsoft format to your mail within 30 Minutes once payment is confirmed. 

--------------------------------------------------------
N/B:    By ordering for our material means you have read and accepted our Terms and Conditions


Terms of Use: This is an academic paper. Students should NOT copy our materials word to word, as we DO NOT encourage Plagiarism. Only use as guide in developing your original research work.

Delivery Assurance
We are trustworthy and can never SCAM you. Our success story is based on the love and fear for God plus constant referrals from our clients who have benefited from our site. We deliver project materials to your Email address within 15-30 Minutes depending on how fast your payment is acknowledged by us.

Quality Assurance
All research projects, Research Term Papers and Essays on this site are well researched, supervised and approved by lecturers who are intellectuals in their various fields of study.
Share:

THE INFLUENCE OF LEVELS AND MODES OF NPK FERTILIZER APPLICATION ON GROWTH AND YIELD OF SOME IMPROVED CASSAVA VARIETIES IN NSUKKA, SOUTH EASTERN NIGERIA

For more Crop Science projects click here

ABSTRACT


A study was carried out at the Department of Crop Science, Faculty of Agriculture Experimental Farm, University of Nigeria, Nsukka to: (i) evaluate the growth and yield of four improved cassava varieties, (ii) determine optimum NPK fertilizer rate for increased productivity and (iii) determine the best mode of fertilizer application for increased productivity. The experiment was laid out in a randomized complete block design with three replications. Four varieties of cassava; TMS 01-1368 (yellow root), TME 419, TMS 98 05 05 and TMS 05 10, four levels of NPK fertilizer 0, 200, 400 and 600 and three modes of fertilizer application; single at 4 weeks after planting (WAP), split at 4 and 8 WAP and split-split at 4, 8 and 12 WAP were used for the study. Data were collected on the following agronomic and yield parameters: survival count, number of branches, number of leaves, plant height, stem girth, canopy diameter, tubers and garri yields (tonnes/ha). The variety TME 419 under the early establishment gave significantly (p<0 -="" .05="" 0.05="" 01="" 05.="" 05="" 10.12="" 10.the="" 12="" 1368="" 200="" 24.69="" 39.4="" 39.8="" 400="" 419="" 5.15="" 600="" 67="" 6="" 9.68="" 90.8="" 91="" 98="" adopted="" after="" although="" and="" application="" at="" be="" because="" boost="" both="" cassava="" compared="" control="" cost.="" cost="" could="" count="" crop="" early="" economical="" farmers="" fertilizer="" for="" fourth="" garri="" gave="" growth.="" growth="" ha="" had="" higher="" highest="" however="" in="" is="" it="" kg="" labour="" leaves.="" leaves="" lower="" lowest="" measures="" minimizes="" month.="" month="" months="" more="" npk="" nsukka="" number="" of="" order="" p="" percentage="" planting.="" planting="" production.="" production="" rate="" reduction="" respectively="" results="" root="" season="" second="" should="" showed="" significantly="" similar="" since="" single="" span="" split="" statistically="" survival="" t="" that="" the="" tme="" tms="" to="" total="" tuber="" variety="" was="" when="" while="" with="" yellow="" yield="" yields="">


TABLE OF CONTENTS

Title page
ABSTRACT

INTRODUCTION

LITERATURE REVIEW
Botany of Cassava
Production area of cassava
Importance of Cassava
Cassava genotypes/collections and morphological descriptors
Genotypic Selection for Higher Crop Productivity
Diseases of Cassava
Nutritional Needs of the Soil

MATERIALS AND METHODS
Experimental site
Materials
Seasons of Cassava planting
Land preparation
Experimental Design
Planting
Fertilizer Application
Data collection
Methods of data collection
Agromet Data
Statistical Analysis

RESULTS
DISCUSSION
REFERENCES


INTRODUCTION


Cassava (Manihot esculenta Crantz.) is a perennial shrub of the family Euphorbiaceae. It is a root crop that is propagated vegetatively from stem cuttings for commercial purposes but can also be propagated through seed. Cassava has been a crop of South America where the indigenous tribes learnt to extract the poisonous juice from the root for the preparation of meal (Leon, 1997). After the conquest of the Americans, the plant was taken to Africa and Asia where it became an important crop for human as well as animal consumption (Ross, 1975). The leaves and tender shoots are important source of vitamins, minerals and proteins (Balagopalan, 2002; Nweke et al., 2002). It was introduced into the southern part of Nigeria during the period of slave trade proliferated by Portuguese explorers and colonizers in the sixteenth century. Nigeria is the world’s largest producer of cassava. The Presidential Cassava Transformation Initiative in Nigeria in 2003 sought to position cassava as a commodity crop and foreign exchange earner, beyond its traditional role as a food crop. Due to its adaptability to marginal soils and erratic rainfall, high productivity per unit of land and labour and possibility of supply throughout the year has been obtained (Nweke et al., 2002). The adaptation to different edapho-climatic conditions (Adeniji et al., 2011) makes cassava a favorite dry season crop grown in inland valleys in west and central Africa (Lahai and Ekanayake, 2009) and it is highly susceptible to excessive water (Ande, 2011). It displays an exceptional ability to adapt to climate change (Albuquerque, 1978). Cassava can grow and yield reasonably well on soil of low fertility where production of most other crops would be uneconomical (Carter et al, 1992). Under favorable soil and climatic conditions, fresh tuber yields of 40-60 t/ha can be obtained (IITA, 2005) It has high resistance to drought, pest and diseases conditions. Also it is suitable to store its roots for long periods underground even after they have matured. Cassava is one of the efficient producers of carbohydrates among the higher plants (Rogers and Appan, 1971). Due to tolerance of cassava to water stress, cassava is used as a famine crop in North Africa where it is the main food source during prolonged periods of drought (Purseeglove, 1954). The root of cassava is made into flours. It has other products as dry extraction of starch, glue or adhesives and modified starch, in pharmaceutical as dextrines, as processing inputs, as industrial starch for drilling and processing food (Arene, 1978). It is extensively used as filler in the manufacture of paints (Godfrey et al., 2012). Interest has recently been developed in its large scale exploitation as an animal feed or as a raw material for the production of starch or power alcohol. On a worldwide basis, it is ranked as the sixth most important source of calories in the human diet (FAO, 1999). Cassava is the world’s sixth most important crop (Lebot, 2009)

and constitutes a staple food for over 700 million people (Njoku et al., 2010)

Depending on the varietal and ecological factors of cassava, some of the varieties are early maturing while others have longer periods to mature. The long duration of 8-24 months of cassava in the soil requires steady supply of nutrient for optimum growth and yield of the crop. However, it has been suggested that commercial cassava be established in marginal soils (Evenson and Keating, 1978). Use of fertilizers and other organic manures are limited in cassava farms as farmers always grow the crop on fallow lands (Acosta and Perez, 1954). Fallow land is expected to supply the nutrient needs of cassava. It has been reported that cassava extracts large amounts of nutrients from the soil especially K and N and continuous cultivation without adequate fertilization would lead to soil depletion and reduced yield (Kurmarohita, 1978). Cassava removes about 55 kg/ha N, 132 kg/ha P and 112 kg/ha K (Howeler, 1991)

Based on the foregoing, it is important to determine NPK fertilizer requirement and best mode of application for increased cassava productivity in improved cassava varieties. Hence, the objectives of the study were to:

1.       evaluate growth and yield of four improved cassava varieties

2.       determine optimum NPK fertilizer rate for increased productivity, and

3.       determine the best mode of fertilizer application for increased productivity......


For more Crop Science projects click here
___________________________________________________________________________
This is an Undergraduate Thesis and the complete research material plus questionnaire and references can be obtained at an affordable price of N3,000 within Nigeria or its equivalent in other currencies.


INSTRUCTION ON HOW TO GET THE COMPLETE PROJECT MATERIAL

Kindly pay/transfer a total sum of N3,000 into any of our Bank Accounts listed below:
·         Diamond Bank Account:
A/C Name:      Haastrup Francis
A/C No.:         0096144450

·         GTBank Account:
A/C Name:      Haastrup Francis
A/C No.:         0029938679

After payment, send your desired Project Topic, Depositor’s Name, and your Active E-Mail Address to which the material would be sent for downloading (you can request for a downloading link if you don’t have an active email address) to +2348074521866 or +2348066484965. You can as well give us a direct phone call if you wish to. Projects materials are sent in Microsoft format to your mail within 30 Minutes once payment is confirmed. 

--------------------------------------------------------
N/B:    By ordering for our material means you have read and accepted our Terms and Conditions


Terms of Use: This is an academic paper. Students should NOT copy our materials word to word, as we DO NOT encourage Plagiarism. Only use as guide in developing your original research work.

Delivery Assurance
We are trustworthy and can never SCAM you. Our success story is based on the love and fear for God plus constant referrals from our clients who have benefited from our site. We deliver project materials to your Email address within 15-30 Minutes depending on how fast your payment is acknowledged by us.

Quality Assurance
All research projects, Research Term Papers and Essays on this site are well researched, supervised and approved by lecturers who are intellectuals in their various fields of study.
Share:

STUDIES ON THE LEAF SPOT DISEASE OF EGGPLANT (Solanum aethiopicum L.) AND ITS MANAGEMENT WITH SOME BOTANICALS

For more Crop Science projects click here

ABSTRACT


Field, greenhouse and laboratory studies were carried out at the Department of Crop Science, University of Nigeria, Nsukka in order to evaluate the leaf spot disease of eggplant and its management with some botanicals. Field survey of diseased plants was conducted on eggplant farm. Solanum aethiopicum L. plants were sampled on every 1 m distance along the diagonal transects for disease incidence and severity. Pathogen isolation from severely infected leaves was carried out in the laboratory where the diseased leaves were plated on fresh Potato Dextrose Agar. Identification of the isolated fungi was carried out with the aid of identification scheme based on their cultural characteristics. Nursery preparation for raising eggplants used in the green house was also carried out on a sterilized soil. The five most abundant pathogens isolated were inoculated separately on the seedlings of eggplant in five replicates. The experiment was arranged in a completely randomized design. Phytochemical contents of the four plant extracts were determined in the laboratory. An in vitro control of the organism responsible for the leaf spots was carried out using plant extracts at 0.030 g/ml, 0.060 g/ml, and 0.120 g/ml and 0.250 g/ml concentrations. The experimental design was a 9x4 factorial in a completely randomized design (CRD). The data were analyzed using analysis of variance (ANOVA). Means were later separated using Fisher’s least significant difference (F-LSD). Helminthosporium infestans Dur. & Mont, Cladophialophora carrionii Trejos, Aspergillus niger van Tieghem, Rhizopus nigricans Ehrenb and Neurospora africana Huang & Backus were isolated from the diseased eggplant leaves. H. infestans recorded the highest percentage frequency (61.11 %) while A. niger had the lowest percentage frequency (5.56 %). H. infestans was pathogenic to eggplant seedlings. The Koch postulate test confirmed H. infestans as the causal organism of the spots symptoms. The qualitative phytochemical analysis on the test plants revealed the presence of tannin, soluble carbohydrate, hydrogen cyanide, steroids, flavonoids, alkaloids as well as glucosides in all the extracts analyzed. The effect of ethanolic extracts of the test plants significantly (P<0 .05="" activity="" and="" anti-fungal="" extracts="" i="" incidence="" of="" pathogen.="" reduced="" seed="" severity="" the="">G.
kola on H. infestans was highest at 0.0120 g/ml concentrations. G. kola could be used as fungicide to manage leaf spot in eggplant because of its availability and eco-friendliness.

TABLE OF CONTENT

Title page
Publications from the work
Table of contents
List of tables
List of appendices
Abstract

INTRODUCTION

LITERATURE REVIEW
Helminthosporium infestans Dur & Mont
Symptoms
Aspergillus niger van Tieghem
Rhizopus nigricans Ehrenb
Cladophialophora carrionii (Trejos)
Neurospora africana Huang & Backus
Plant extracts for Crop Protection
Neem  (Azadirachta indica L.)
Utazi (Gongronema latifolia L.)
Paw- paw (Carica papaya L.)
Ginger (Zingiber officinale Rosecoe)
Bitter kola (Garcinia kola Heckel)
Phytochemicals
How phytochemicals work

MATERIALS AND METHODS
Determination of the pathogenicity of fungi isolates on African
eggplants in greenhouse
Isolation and identification of the pathogens associated with diseased eggplants
Identification of Pathogens
Composition and Preparation of different types of culture media
Preparation of PDA media
Preparation of water agar
Preparation of inoculum suspensions
Soil sterilization
Study on the leaf spot disease organism (Helminthosporium infestans)
Phytochemical analysis of some medicinal plants
Determination of the phytotixicty effect of plant extract on eggplant and disease organism
In- vitro control of the organism using Plant extracts and synthetic fungicides

RESULTS
Mean percentage disease incidence and severity of leaf spot disease on eggplant surveyed for 30 days
Fungi associated with the eggplant leaf spot disease, their percentage
frequencies of occurrence and pathogenic test
Phytochemical analysis of the five plant extracts
Plant extracts concentrations on days to seed germination and 50 percent seed germination
Plant extracts concentration on days to 100 (%) seed germination and days to leaf formation
Plant extracts concentration on percentage seed germination at 7 and 14 days of incubation
Number of dormant seeds after seed germination
Colony growth (diameter) on mycelia growth 3 days after inoculation
Colony growth (diameter) on mycelia growth 6 and 7 days after inoculation
Colony growth (diameter) on mycelia growth 9 and 10 days after inoculation
Colony growth (diameter) on mycelia growth 14 days after inoculation
The mean percentage inhibition of the plant extracts and synthetic fungicides 3 days after inoculation
The mean percentage inhibition of the plant extracts and synthetic fungicides 7 days after inoculation
The mean percentage inhibition of plant extracts and synthetic fungicides
14 days after inoculation

Discussion
Conclusion
References
Appendix


INTRODUCTION

The African eggplant (Solanum aethiopicum L.), known as garden egg, aƱara, aubergine in Europe and brinjal in India or guinea squash is one of the important vegetable crops grown worldwide. The name eggplant is derived from the shape of the fruits of some varieties which are white and have the shape of chicken eggs. Eggplant is essentially a warm weather crop which extensively grows in Eastern and Southern Asia, including India, USA, Bangladesh, Pakistan, China, Japan, and the Philippines. It is also popular in Egypt, France, Italy (Tindall, 1983). According to FAO 1994 Production Year Book, the world eggplant production land area was 556,000 ha, and the total production was 8,979,000 metric tons. Gill and Tomar (1991) reported 299,770 ha of eggplant production area in India, and 29,150 ha in Bangladesh in 1992-93. Eggplant can be grown in all parts of Nigeria all the year round. It is grown commercially as an annual crop; it is a short- lived perennial branching herb with a height of 0.5-1.5m. The fruit can be eaten in various forms without the need for an elaborate preparation. It is eaten raw, cooked or used to season other foods. Eggplant supplements starchy foods. It is also a cheap source of protein, minerals and vitamins (Lombin and Yayock, 1988). The tender green leaves of some species are also used as vegetables or eaten raw in African salads, ugba. It can be eaten as appetizer or offered to visitors as desert (kola).


The African eggplant (Solanum aethiopicum L.) is affected by several fungal diseases which inflict heavy losses in its production. One of such fungal disease is the leaf spot disease. Severely infected leaves drop off prematurely resulting in the reduction of yield. Due to environmental concerns, great emphasis has been laid on alternative measures other than chemicals, to control this fungal disease. The use of botanicals and antimicrobial agents of plant origin is a time –honored practice for control of plant diseases and pests. The necessity to develop a non-toxic, safe and biodegradable alternative to synthetic fungicides has in recent years led to a concerted effort at developing new control measures from plant parts. The humid especially the rainforest ecological zones are endowed with abundant flora of families of plants and herbs with untapped pesticides potentials (Amadioha, 2003, 2004). Stoll (2000) listed an array of plant families and genera possessing antimicrobial properties, amongst which were Azadirachta indica, Zingiber officinale, Garcinia kola, Carica papaya, Gongronema latifolium and host of others. Amadioha (2003), Kumar and Pamar (1996) and Prakash and Roa (1997) listed some of the advantages of plant extracts over synthetic chemicals to include possession of low mammalian toxicity, minimal health hazards and environmental pollution. There is practically no reported risk of developing pest resistance to these products when used in their natural forms. Also, no side effect on plant growth, seed viability or food quality has been reported. Botanicals are less expensive and easily available because of their natural occurrence. Synthetic fungicides are expensive and inaccessible to indigenous farmers who are the bulk producers of eggplant in Nigeria (Amadioha, 1998; Onuegbu et al., 2001). A natural plant product with fungicidal properties could be more environmental friendly than synthetic fungicides.
Aqueous extracts of some plants have been used in laboratory bioassays (John and James, 2004). These plants include Allium cepa (onion), a biennial herb of Liliaceae family used commonly as spice for flavoring food. Allium sativum L. (garlic), another biennial herb of Liliaceae family and the second most widely use Allium after A. cepa; it is used as condiments for flavoring foods. Stoll (1998) reported the bactericidal properties of Azadirachta indica A Juss (neem), a fast growing tree of the family Meliaceae and also a medicinal plant with insecticidal, nematicidal, antifungal and bactericidal properties. It occupies a foremost status among all the plants exploited so far for bio-efficacy against pests and diseases (Kumar and Pamar, 1996). The primary antimicrobial constituents are Azadirachtin A and B. In addition, Neem contains a good number of other chemical substances which include Salannin, Meliantriol, Azadirachtannin..... 


For more Crop Science projects click here
___________________________________________________________________________
This is an Undergraduate Thesis and the complete research material plus questionnaire and references can be obtained at an affordable price of N3,000 within Nigeria or its equivalent in other currencies.


INSTRUCTION ON HOW TO GET THE COMPLETE PROJECT MATERIAL

Kindly pay/transfer a total sum of N3,000 into any of our Bank Accounts listed below:
·         Diamond Bank Account:
A/C Name:      Haastrup Francis
A/C No.:         0096144450

·         GTBank Account:
A/C Name:      Haastrup Francis
A/C No.:         0029938679

After payment, send your desired Project Topic, Depositor’s Name, and your Active E-Mail Address to which the material would be sent for downloading (you can request for a downloading link if you don’t have an active email address) to +2348074521866 or +2348066484965. You can as well give us a direct phone call if you wish to. Projects materials are sent in Microsoft format to your mail within 30 Minutes once payment is confirmed. 

--------------------------------------------------------
N/B:    By ordering for our material means you have read and accepted our Terms and Conditions


Terms of Use: This is an academic paper. Students should NOT copy our materials word to word, as we DO NOT encourage Plagiarism. Only use as guide in developing your original research work.

Delivery Assurance
We are trustworthy and can never SCAM you. Our success story is based on the love and fear for God plus constant referrals from our clients who have benefited from our site. We deliver project materials to your Email address within 15-30 Minutes depending on how fast your payment is acknowledged by us.

Quality Assurance
All research projects, Research Term Papers and Essays on this site are well researched, supervised and approved by lecturers who are intellectuals in their various fields of study.
Share:

Search for your topic here

To view a full list of Project Topics under your Department

Featured Post

Article: How to Write a Research Proposal

Most students and beginning researchers do not fully understand what a research proposal means, nor do they understand ...

Popular Posts