THE STUDY OF LONGITUDINAL AND LATITUDINAL VARIATION OF EQUATORIAL ELECTROJET SIGNATURE AT STATIONS WITHIN THE 96°MM AND 210°MM AFRICAN AND ASIAN SECTORS RESPECTIVELY UNDER QUIET CONDITION

For more Physics projects click here


ABSTRACT


Solar quiet current ( ) and Equatorial Electrojet (EEJ) are two current systems which are produced by electric current in the ionosphere. The enhancement of the horizontal magnetic field is the EEJ. This research is needed for monitoring equatorial geomagnetic current which causes atmospheric instabilities and affects high frequency and satellite communication. This study presents the longitudinal and latitudinal variation of equatorial electrojet signature at stations within the 96°   210°   African and Asian sectors respectively during quiet condition. Data from eleven observatories were used for this study. The aim of this study is to investigate the equatorial variation of the solar quite ( ) current, as well as determine the longitudinal and latitudinal magnetic signatures on the EEJ at some African and Asian sectors under quiet condition. The objectives of the study therefore are to: Determine the longitudinal and latitudinal geomagnetic field variations during solar quiet conditions along the 96° 210°  ; Investigate monthly variation and diurnal transient seasonal variation; Measure the strength of the EEJ at stations within the same longitudinal sectors of 96° 210° ; and find out the factors responsible for the longitudinal and latitudinal variation of EEJ under solar quiet condition. Horizontal ( ) component of geomagnetic field for the year 2008 from Magnetic Data Acquisition System (MAGDAS) network were used for the study. The International Quiet Days (IQDs) were used to identify quiet days. Daily baseline values for each of the geomagnetic element  , can be obtained from 0 = 12 ( 24 + 1) where 0 is the dailybaseline. The daily baseline was subtracted from the hourly values to get the hourly departure from midnight for a particular day = − 0 where = 1 24 gives the measure of the hourly amplitude of the variation of . The monthly average of the diurnal variation was found. The seasonal variation of was found by averaging the monthly means for Lloyd’s season. Results showed that: The longitudinal and latitudinal variation in the differs in magnitude from one station to another within the same longitude due to the difference in the influence of the EEJ on them, which depends on how far from or near (latitudinal difference) they are to the EEJ band (confined within ±3°) wherein the EEJ current flows eastwards; The highest monthly longitudinal variation of EEJ is 92 at DAV and TIR during September equinox. This high amplitude at DAV and TIR compared with the other 9 stations, showed the presence of higher electric current (equatorial electrojet) in the ionosphere flowing over DAV and TIR. Thus the high magnitude could possibly be due to a greater width of the electrojet over the stations. The variation pattern for daily, monthly and seasonal variation were found to be similar; The magnitude of EEJ strength at stations within the same specified longitude differ where the EEJ strength at ILR is maximum with of 55 at about 1100 LT and maximum EEJ strength at DAV is 93 at about 1200LT which is the highest for the specified year; The possible factors responsible for the variation of EEJ is seen to be the ionospheric processes and physical structure such as wind and conductivity. The value peaks between 1000 LT and 0200 LT for all the plots and varies with longitude and with latitude. The EEJ value for equinoctial months is seen to be higher than those of solstice months where the buildup flank is steeper in the morning hours than in the evening hours.


TABLE OF CONTENTS

TITLE PAGE
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
ABSTRACT

CHAPTER ONE: INTRODUCTION
1.1       Background to Study
1.1.1    Classification of the Earth’s Atmosphere
1.1.2    Magnetosphere
1.1.3    Ionosphere
1.1.4    Ionospheric Layers
1.1.5    Equatorial Ionosphere
1.1.6    Ionospheric Variations
1.1.7    Latitudinal Variations
1.2       Aim and Objectives of the Study
1.3       Justification
1.4       Scope and Limitation of the Study

CHAPTER TWO: REVIEW OF RELATED LITERATURE
2.1       Geomagnetic Storm
2.2       Equatorial Electrojet (EEJ)
2.3       Counter Electrojet(CEJ)
2.4       Review of Previous Studies on EEJ

CHAPTER THREE: MATERIALS AND METHOD
3.1       The MAGDAS/CPMN System
3.1.1    The MAGDAS Instrument
3.2       Data Source
3.3       Method of Data Analysis

CHAPTER FOUR: RESULTS AND DISCUSSION
4.1       Introduction to Results
4.2       Discussion of Results

CHAPTER FIVE: SUMMARY, CONCLUSION AND RECOMMENDATIONS
5.1       Summary
5.2       Conclusion
5.3       Recommendations
            References


CHAPTER ONE


INTRODUCTION


1.1         Background to Study


The Earth's atmosphere is roughly 78 percent nitrogen, 21 percent oxygen, with trace amounts of water, argon, carbon dioxide and other gases. Nowhere else in the solar system can one find an atmosphere loaded with free oxygen, which ultimately proved vital to one of the other unique features of the Earth.

The air surrounds the Earth and becomes thinner farther from the surface. Roughly 160 km above the Earth, the air is so thin that satellites can zip through with little resistance. Still, traces of atmosphere can be found as high as 600 km above the surface.

1.1.1     Classification of the Earth’s Atmosphere



The earth’s atmosphere is generally divided into two broad sections namely; the lower and the upper atmosphere. The lower atmosphere starts from the surface of the earth and extends to about 40-50 km above the earth, depending on the latitude. The parameter of this region are what the meteorologists use in predicting atmospheric weather conditions. The earth’s upper atmosphere (ionosphere) starts from about 50 km above the earth and extends to about 600 km. This region is electrically conducting because of the partially ionized plasma that is produced by photo-ionization and this leads to the variation in the ionization level of the ionosphere. These variations can be regular and irregular. The atmosphere can be divided into layers based on its temperature. On the basis of temperature nomenclature; it can be divided into five layers or regions which are: troposphere, stratosphere, mesosphere, thermosphere and exosphere (Figure1.1). In terms of level of ionization, it can be divided into neutrosphere, ionosphere and protonosphere.
Troposphere


The troposphere is the lowest layer of Earth's atmosphere and site of all weather on Earth (Figure 1.1). The troposphere is bonded on the top by a layer of air called the tropopause, which separates the troposphere from the stratosphere, and on bottom by the surface of the Earth. The troposphere is wider at the equator 16 km than at the poles 8 km and contains 75 percent of atmosphere's mass. Temperature and water vapor content in the troposphere decreases rapidly with altitude and the troposphere contains 99% of the water vapor in the atmosphere, it is in this layer that weather change phenomena takes place because water vapor plays a major role in regulating air temperature, due to its (Troposphere layer’s) ability for the absorption of solar energy and thermal radiation from the planet's surface. As sunlight enters the atmosphere, a portion is immediately reflected back to space, but the rest penetrates the atmosphere and is absorbed by the earth's surface. This energy is then remitted by the earth back into atmosphere as long-wave radiation. Carbon dioxide and water molecules absorb this energy and emit much of it back towards the earth again which helps to keep the average global temperature from changing drastically from year to year.


For more Physics projects click here
___________________________________________________________________________
This is an Undergraduate Thesis and the complete research material plus questionnaire and references can be obtained at an affordable price of N3,000 within Nigeria or its equivalent in other currencies.


INSTRUCTION ON HOW TO GET THE COMPLETE PROJECT MATERIAL

PAYMENT  OPTION 1:
Kindly pay a total sum of N3,000 into any of our Bank Accounts listed below:
·         Skye Bank Account:
A/C Name:      Haastrup Damilola
A/C No.:         1013708342

·         GTBank Account:
A/C Name:      Haastrup Francis
A/C No.:         0029938679
After payment, send your desired Project Topic, Depositor’s Name, Teller No., and your Active E-Mail Address to which the material would be sent for downloading (you can request for a downloading link if you don’t have an active email address) to +2348074521866 or +2348066484965. You can as well give us a direct phone call if you wish to. Projects materials are sent in Microsoft format to your mail within 30 Minutes once payment is confirmed.


PAYMENT  OPTION 2:
You can make an online payment here for this material:


After a successful Online Web Payment, kindly Click Here to fill the “Payment Details Form”


--------------------------------------------------------
N/B:    By ordering for our material means you have read and accepted our Terms and Conditions


Terms of Use: This is an academic paper. Students should NOT copy our materials word to word, as we DO NOT encourage Plagiarism. Only use as guide in developing your original research work.

Delivery Assurance
We are trustworthy and can never SCAM you. Our success story is based on the love and fear for God plus constant referrals from our clients who have benefited from our site. We deliver project materials to your Email address within 15-30 Minutes depending on how fast your payment is acknowledged by us.

Quality Assurance
All research projects, Research Term Papers and Essays on this site are well researched, supervised and approved by lecturers who are intellectuals in their various fields of study.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.