DESIGN, CONSTRUCTION AND PERFORMANCE EVALUATION OF A PASSIVE SOLAR WATER HEATER

For more Physics projects click here


ABSTRACT


Solar energy being transmitted from the sun through space to earth by electromagnetic radiation must be converted to heat before it can be used in a practical heating or cooling system. Solar energy collectors, the devices used to convert the suns radiation to heat, usually consist of a surface that efficiently absorbs radiation and converts this incident flux to heat which raises the temperature of the absorbing material.There is the need for adequate research to be carried out on the solar heating system so as to make recommendations on the right design to improve it performance and save energy costs. The objective of this work is to provide energy for heating water for domestic and industrial use, to publicize the knowledge to potential users and for commercial purposes, to make relevant recommendations based on the outcome of the research so as to improve the efficiency of the solar water heating system. In this research work, solar water heating system has been designed and constructed using locally available materials. Solar energy is received by a flate plate collector consisting of an absorber plate made up of galvanized sheet with a length of 110 cm, a width of 80 cm and a thickness of 0.7 mm. The zigzag-pipe is fixed to the sheet and then painted dull-black., integrated with fluid carrying tubes, and place in an insulated casing with a trasparent glass cover having a storage tank integrated in the system. The radiation emmited by the absorber plate cannot escape through the glass, thus increasing it temperature. The water gets heated and flows into the storage tank through the thermosyphon principle.The system was tested in the month of August 2017. The maximum temperature of the heated water and collector surface temperature of 85 0C and 75 0C respectively, were recorded between the hours of 1:00 pm and 2:00 pm on a sunny day. This solar water heating system finds useful application in homes and industries. The solar water heater can be used in regions where there is abundant and consistent sunlight. Based on this research work, it is recommended that the insulation layer should be made up of styro-foam because it has greater ability to prevent heat loss and a separate tank be provided for the heated water.


TABLE OF CONTENT

Table of contents
List of figures
List of tables
Abstract

CHAPTER ONE: INTRODDUCTION
1.1 Background study
1.2 Statement of result
1.3 Aims and Objectives
1.4 Justification
1.5 Scope and limitation of the study
1.6 Definition of terms

CHAPTER TWO: LITERATURE REVIEW
2.1 Green house effect
2.2 Temperature from the absorber plate
2.3 Efficiency of flate plate solar collector
2.4 Solar technology
2.5 Application of solar energy
2.6 Solar intensity on the earth surface
2.7 Review of solar water heater
2.8 Flat-plate collector
2.9 Thermosiphon principle
2.10 Past investigations and relevant reseearch
2.11 Reasons for Solar Energy
2.12 Description of some idealized surfaced and their characterics features

CHAPTER THREE: MATERIALS AND METHODS
3.1 Selection of materials
3.2 Construction of the absorber plate
3.3 Construction of the collector box
3.4 Construction of the storage tank
3.5 Assembling of the solar water heater
3.6 Procedure of obtaining measurements

CHAPTER FOUR: RESULTS AND DISCUSSION
4.1 Testing and Results
4.2 Table of results
4.3 Discussion

CHAPTER FIVE: SUMMARY, CONCLUSION AND RECOMMENDATIONS
5.1 Summary
5.2 Conclusion
5.3 Recommendation
REFERENCES


CHAPTER ONE

INTRODUCTION

1.1         Background of the Study

Renewable energy resources of which the sun is a good example, are those resources which undergo a faster replenishment rate within a relatively short time than the rate at which they are utilized or depleted. The energy of the sun is generated from the nuclear fusion of its hydrogen into helium, with a resulting mass depletion rate of approximately 4.7 × 106 tons per second. The earth’s population currently needs 15 TW of power in total, but the solar radiation that reaches the earth on a continuous basis amounts to 120,000 TW; hence, just a fraction of the suns energy reaching the earth will cover the bulk of energy requirements (Bradke et al., 2011).

Solar energy being transmitted from the sun through space to earth by electromagnetic radiation must be converted to heat before it can be used in a practical heating or cooling system. Since solar energy is relatively dilute when it reaches the earth, the size of a system used to convert it to heat must be relatively large. Solar energy collectors, the devices used to convert the suns radiation to heat, usually consist of a surface that efficiently absorbs radiation and converts this incident flux to heat which raises the temperature of the absorbing material. A part of this energy is then removed from the absorbing surface by means of heat transfer fluid that may either be liquid or gaseous. One of the simple forms of solar energy collectors built is the flat-plate collector (Nosa et al., 2013).


Solar water heaters can operate in any climate. Performance varies depending on how much solar energy is available at the site, but also on how cold the water coming into the system is. The colder the water, the more efficiently the system operates. In almost all climates, you will need a conventional backup system. In fact, many building codes are required to have a conventional water heater as the backup.
Even in our country Nigeria, people from several areas often put water outside, so that after getting warm, it could be used for things like bathing, drinking and other thermal comforts. Seeing the solar energy or solar water heater in particular today, it is clear that solar water heater have undergone several modifications for more efficiency.

1.2         Statement of Problem

Since the 1970’s, residential solar technology has emerged as a result of the increasing cost of energy consumption, which in most cases is used for heating and cooling, is typically the most significant operational cost in residential buildings. Many attempts have been made thereafter to save cost on heating and cooling energy. Although the features of each specific solar heating system vary, the basic components of a solar heating system are the same. It should at least include: a collector, where heat is collected from the solar energy; heat storage and a heat circulation system (Shurcliff, 1979).

Thus, there is the need for adequate research to be carried out on the solar heating system so as to make recommendations on the right design to improve it performance and save energy costs.

1.3         Aim and Objectives

The main aim of this work is the development of a low cost solar water heater, constructed using a high percentage of locally available materials. The objectives of this work are:

(i)                 To provide energy for heating water for domestic and industrial use.

(ii)               To publicize the knowledge to potential users and for commercial purposes.


(iii)             To make relevant recommendations based on the outcome of the research so as to improve the efficiency of the solar water heating system.


For more Physics projects click here
___________________________________________________________________________
This is an Undergraduate Thesis and the complete research material plus questionnaire and references can be obtained at an affordable price of N3,000 within Nigeria or its equivalent in other currencies.


INSTRUCTION ON HOW TO GET THE COMPLETE PROJECT MATERIAL

PAYMENT  OPTION 1:
Kindly pay a total sum of N3,000 into any of our Bank Accounts listed below:
·         Skye Bank Account:
A/C Name:      Haastrup Damilola
A/C No.:         1013708342

·         GTBank Account:
A/C Name:      Haastrup Francis
A/C No.:         0029938679
After payment, send your desired Project Topic, Depositor’s Name, Teller No., and your Active E-Mail Address to which the material would be sent for downloading (you can request for a downloading link if you don’t have an active email address) to +2348074521866 or +2348066484965. You can as well give us a direct phone call if you wish to. Projects materials are sent in Microsoft format to your mail within 30 Minutes once payment is confirmed.


PAYMENT  OPTION 2:
You can make an online payment here for this material:


After a successful Online Web Payment, kindly Click Here to fill the “Payment Details Form”


--------------------------------------------------------
N/B:    By ordering for our material means you have read and accepted our Terms and Conditions


Terms of Use: This is an academic paper. Students should NOT copy our materials word to word, as we DO NOT encourage Plagiarism. Only use as guide in developing your original research work.

Delivery Assurance
We are trustworthy and can never SCAM you. Our success story is based on the love and fear for God plus constant referrals from our clients who have benefited from our site. We deliver project materials to your Email address within 15-30 Minutes depending on how fast your payment is acknowledged by us.

Quality Assurance
All research projects, Research Term Papers and Essays on this site are well researched, supervised and approved by lecturers who are intellectuals in their various fields of study.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.